Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dijet photoproduction at low x at next-to-leading order and its back-to-back limit

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 28 October 2022
  • Volume 2022, article number 184, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Dijet photoproduction at low x at next-to-leading order and its back-to-back limit
Download PDF
  • Pieter Taels  ORCID: orcid.org/0000-0001-9252-60231,2,
  • Tolga Altinoluk3,
  • Guillaume Beuf  ORCID: orcid.org/0000-0002-5894-76573 &
  • …
  • Cyrille Marquet1 
  • 223 Accesses

  • 37 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We compute the cross section for the inclusive photoproduction of a pair of jets at next-to-leading order accuracy in the Color Glass Condensate (CGC) effective theory. The aim is to study the back-to-back limit, to investigate whether transverse momentum dependent (TMD) factorization can be recovered at this perturbative order. In particular, we focus on large Sudakov double logarithms, which are dominant terms in the TMD evolution kernel. Interestingly, the kinematical improvement of the low-x resummation scheme turns out to play a crucial role in our analysis.

Article PDF

Download to read the full article text

Similar content being viewed by others

Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate

Article Open access 29 November 2021

Back-to-back inclusive dijets in DIS at small x: gluon Weizsäcker-Williams distribution at NLO

Article Open access 14 August 2023

A fresh look at factorization breaking in diffractive photoproduction of dijets at HERA at next-to-leading order QCD

Article Open access 19 August 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].

  2. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].

  3. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  4. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  5. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

  6. S. Catani, M. Ciafaloni and F. Hautmann, Gluon contributions to small x heavy flavor production, Phys. Lett. B 242 (1990) 97 [INSPIRE].

  7. S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].

  9. M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].

  10. L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

  11. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

  12. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

  13. L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].

  14. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

  15. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

  16. J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

  17. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

  18. H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

  19. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

  20. E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

  21. E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

  22. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

  23. I. Balitsky, Factorization for high-energy scattering, Phys. Rev. Lett. 81 (1998) 2024 [hep-ph/9807434] [INSPIRE].

  24. I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].

  25. Y.V. Kovchegov, Small x F2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

  26. Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard processes in quantum chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1 [INSPIRE].

  30. M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low qT and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon. B 46 (2015) 2501 [arXiv:1507.05267] [INSPIRE].

    Article  ADS  Google Scholar 

  32. X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].

  33. F. Hautmann and H. Jung, Angular correlations in multi-jet final states from k-perpendicular-dependent parton showers, JHEP 10 (2008) 113 [arXiv:0805.1049] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Deak, F. Hautmann, H. Jung and K. Kutak, Forward jet production at the Large Hadron Collider, JHEP 09 (2009) 121 [arXiv:0908.0538] [INSPIRE].

    Article  ADS  Google Scholar 

  35. H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].

  36. M. Deak, F. Hautmann, H. Jung and K. Kutak, Forward jets and energy flow in hadronic collisions, Eur. Phys. J. C 72 (2012) 1982 [arXiv:1112.6354] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Dooling, F. Hautmann and H. Jung, Hadroproduction of electroweak gauge boson plus jets and TMD parton density functions, Phys. Lett. B 736 (2014) 293 [arXiv:1406.2994] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Hentschinski, A. Kusina and K. Kutak, Transverse momentum dependent splitting functions at work: quark-to-gluon splitting, Phys. Rev. D 94 (2016) 114013 [arXiv:1607.01507] [INSPIRE].

  39. M. Bury, A. van Hameren, H. Jung, K. Kutak, S. Sapeta and M. Serino, Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers, Eur. Phys. J. C 78 (2018) 137 [arXiv:1712.05932] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Hentschinski, A. Kusina, K. Kutak and M. Serino, TMD splitting functions in kT factorization: the real contribution to the gluon-to-gluon splitting, Eur. Phys. J. C 78 (2018) 174 [arXiv:1711.04587] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Blanco, A. van Hameren, H. Jung, A. Kusina and K. Kutak, Z boson production in proton-lead collisions at the LHC accounting for transverse momenta of initial partons, Phys. Rev. D 100 (2019) 054023 [arXiv:1905.07331] [INSPIRE].

  42. A. van Hameren, P. Kotko, K. Kutak and S. Sapeta, Broadening and saturation effects in dijet azimuthal correlations in p-p and p-Pb collisions at \( \sqrt{s} \) = 5.02 TeV, Phys. Lett. B 795 (2019) 511 [arXiv:1903.01361] [INSPIRE].

  43. A. van Hameren, P. Kotko, K. Kutak and S. Sapeta, Sudakov effects in central-forward dijet production in high energy factorization, Phys. Lett. B 814 (2021) 136078 [arXiv:2010.13066] [INSPIRE].

  44. M. Hentschinski, Transverse momentum dependent gluon distribution within high energy factorization at next-to-leading order, Phys. Rev. D 104 (2021) 054014 [arXiv:2107.06203] [INSPIRE].

  45. M. Nefedov, Sudakov resummation from the BFKL evolution, Phys. Rev. D 104 (2021) 054039 [arXiv:2105.13915] [INSPIRE].

  46. D.-X. Zheng and J. Zhou, Sudakov suppression of the Balitsky-Kovchegov kernel, JHEP 11 (2019) 177 [arXiv:1906.06825] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. P. Sun, B.-W. Xiao and F. Yuan, Gluon distribution functions and Higgs boson production at moderate transverse momentum, Phys. Rev. D 84 (2011) 094005 [arXiv:1109.1354] [INSPIRE].

  48. A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov resummation in small-x saturation formalism, Phys. Rev. Lett. 110 (2013) 082301 [arXiv:1210.5792] [INSPIRE].

  49. A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov double logarithms resummation in hard processes in the small-x saturation formalism, Phys. Rev. D 88 (2013) 114010 [arXiv:1308.2993] [INSPIRE].

  50. B.-W. Xiao, F. Yuan and J. Zhou, Transverse momentum dependent parton distributions at small-x, Nucl. Phys. B 921 (2017) 104 [arXiv:1703.06163] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. A. Stasto, S.-Y. Wei, B.-W. Xiao and F. Yuan, On the dihadron angular correlations in forward pA collisions, Phys. Lett. B 784 (2018) 301 [arXiv:1805.05712] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Marquet, S.-Y. Wei and B.-W. Xiao, Probing parton saturation with forward Z0-boson production at small transverse momentum in p+p and p+A collisions, Phys. Lett. B 802 (2020) 135253 [arXiv:1909.08572] [INSPIRE].

  53. D. Boer, P.J. Mulders, J. Zhou and Y.-J. Zhou, Suppression of maximal linear gluon polarization in angular asymmetries, JHEP 10 (2017) 196 [arXiv:1702.08195] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Zhou, Scale dependence of the small x transverse momentum dependent gluon distribution, Phys. Rev. D 99 (2019) 054026 [arXiv:1807.00506] [INSPIRE].

  55. D. Boer, Y. Hagiwara, J. Zhou and Y.-J. Zhou, Scale evolution of T-odd gluon TMDs at small x, Phys. Rev. D 105 (2022) 096017 [arXiv:2203.00267] [INSPIRE].

  56. C.J. Bomhof, P.J. Mulders and F. Pijlman, The construction of gauge-links in arbitrary hard processes, Eur. Phys. J. C 47 (2006) 147 [hep-ph/0601171] [INSPIRE].

  57. A. Metz and J. Zhou, Distribution of linearly polarized gluons inside a large nucleus, Phys. Rev. D 84 (2011) 051503 [arXiv:1105.1991] [INSPIRE].

  58. T. Altinoluk, C. Marquet and P. Taels, Low-x improved TMD approach to the lepto- and hadroproduction of a heavy-quark pair, JHEP 06 (2021) 085 [arXiv:2103.14495] [INSPIRE].

    Article  ADS  Google Scholar 

  59. F. Dominguez, B.-W. Xiao and F. Yuan, kt-factorization for hard processes in nuclei, Phys. Rev. Lett. 106 (2011) 022301 [arXiv:1009.2141] [INSPIRE].

  60. F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of unintegrated gluon distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].

  61. P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].

  62. S. Meissner, A. Metz and K. Goeke, Relations between generalized and transverse momentum dependent parton distributions, Phys. Rev. D 76 (2007) 034002 [hep-ph/0703176] [INSPIRE].

  63. F. Dominguez, J.-W. Qiu, B.-W. Xiao and F. Yuan, On the linearly polarized gluon distributions in the color dipole model, Phys. Rev. D 85 (2012) 045003 [arXiv:1109.6293] [INSPIRE].

  64. E. Akcakaya, A. Schäfer and J. Zhou, Azimuthal asymmetries for quark pair production in pA collisions, Phys. Rev. D 87 (2013) 054010 [arXiv:1208.4965] [INSPIRE].

  65. A. Dumitru, T. Lappi and V. Skokov, Distribution of linearly polarized gluons and elliptic azimuthal anisotropy in deep inelastic scattering dijet production at high energy, Phys. Rev. Lett. 115 (2015) 252301 [arXiv:1508.04438] [INSPIRE].

  66. C. Marquet, E. Petreska and C. Roiesnel, Transverse-momentum-dependent gluon distributions from JIMWLK evolution, JHEP 10 (2016) 065 [arXiv:1608.02577] [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Marquet, C. Roiesnel and P. Taels, Linearly polarized small-x gluons in forward heavy-quark pair production, Phys. Rev. D 97 (2018) 014004 [arXiv:1710.05698] [INSPIRE].

  68. T. Altinoluk, R. Boussarie, C. Marquet and P. Taels, TMD factorization for dijets + photon production from the dilute-dense CGC framework, JHEP 07 (2019) 079 [arXiv:1810.11273] [INSPIRE].

    Article  ADS  Google Scholar 

  69. T. Altinoluk, R. Boussarie, C. Marquet and P. Taels, Photoproduction of three jets in the CGC: gluon TMDs and dilute limit, JHEP 07 (2020) 143 [arXiv:2001.00765] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Bury, P. Kotko and K. Kutak, TMD gluon distributions for multiparton processes, Eur. Phys. J. C 79 (2019) 152 [arXiv:1809.08968] [INSPIRE].

    Article  ADS  Google Scholar 

  71. P. Kotko, K. Kutak, C. Marquet, E. Petreska, S. Sapeta and A. van Hameren, Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions, JHEP 09 (2015) 106 [arXiv:1503.03421] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework, JHEP 12 (2016) 034 [Erratum ibid. 02 (2019) 158] [arXiv:1607.03121] [INSPIRE].

  73. T. Altinoluk, R. Boussarie and P. Kotko, Interplay of the CGC and TMD frameworks to all orders in kinematic twist, JHEP 05 (2019) 156 [arXiv:1901.01175] [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Altinoluk and R. Boussarie, Low x physics as an infinite twist (G)TMD framework: unravelling the origins of saturation, JHEP 10 (2019) 208 [arXiv:1902.07930] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R. Boussarie and Y. Mehtar-Tani, Gauge invariance of transverse momentum dependent distributions at small x, Phys. Rev. D 103 (2021) 094012 [arXiv:2001.06449] [INSPIRE].

  76. A. van Hameren, P. Kotko, K. Kutak, S. Sapeta and E. Żarów, Probing gluon number density with electron-dijet correlations at EIC, Eur. Phys. J. C 81 (2021) 741 [arXiv:2106.13964] [INSPIRE].

    Article  ADS  Google Scholar 

  77. R. Boussarie, H. Mäntysaari, F. Salazar and B. Schenke, The importance of kinematic twists and genuine saturation effects in dijet production at the Electron-Ion Collider, JHEP 09 (2021) 178 [arXiv:2106.11301] [INSPIRE].

    Article  ADS  Google Scholar 

  78. J.B. Kogut and D.E. Soper, Quantum electrodynamics in the infinite momentum frame, Phys. Rev. D 1 (1970) 2901 [INSPIRE].

  79. J.D. Bjorken, J.B. Kogut and D.E. Soper, Quantum electrodynamics at infinite momentum: scattering from an external field, Phys. Rev. D 3 (1971) 1382 [INSPIRE].

  80. S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].

  81. A. Accardi et al., Electron Ion Collider: the next QCD frontier. Understanding the glue that binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].

    Article  ADS  Google Scholar 

  82. LHeC and FCC-he Study Group collaborations, The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501 [arXiv:2007.14491] [INSPIRE].

  83. P. Caucal, F. Salazar and R. Venugopalan, Dijet impact factor in DIS at next-to-leading order in the color glass condensate, JHEP 11 (2021) 222 [arXiv:2108.06347] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. P. Sun, C.P. Yuan and F. Yuan, Soft gluon resummations in dijet azimuthal angular correlations in hadronic collisions, Phys. Rev. Lett. 113 (2014) 232001 [arXiv:1405.1105] [INSPIRE].

  85. P. Sun, C.P. Yuan and F. Yuan, Transverse momentum resummation for dijet correlation in hadronic collisions, Phys. Rev. D 92 (2015) 094007 [arXiv:1506.06170] [INSPIRE].

  86. M. Ciafaloni, Coherence effects in initial jets at small Q2/s, Nucl. Phys. B 296 (1988) 49 [INSPIRE].

  87. B. Andersson, G. Gustafson and J. Samuelsson, The linked dipole chain model for DIS, Nucl. Phys. B 467 (1996) 443 [INSPIRE].

    Article  ADS  Google Scholar 

  88. J. Kwiecinski, A.D. Martin and P.J. Sutton, Constraints on gluon evolution at small x, Z. Phys. C 71 (1996) 585 [hep-ph/9602320] [INSPIRE].

  89. G.P. Salam, A resummation of large subleading corrections at small x, JHEP 07 (1998) 019 [hep-ph/9806482] [INSPIRE].

  90. L. Motyka and A.M. Stasto, Exact kinematics in the small x evolution of the color dipole and gluon cascade, Phys. Rev. D 79 (2009) 085016 [arXiv:0901.4949] [INSPIRE].

  91. G. Beuf, Improving the kinematics for low-x QCD evolution equations in coordinate space, Phys. Rev. D 89 (2014) 074039 [arXiv:1401.0313] [INSPIRE].

  92. E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Resumming double logarithms in the QCD evolution of color dipoles, Phys. Lett. B 744 (2015) 293 [arXiv:1502.05642] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  93. B. Ducloué, E. Iancu, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Non-linear evolution in QCD at high-energy beyond leading order, JHEP 04 (2019) 081 [arXiv:1902.06637] [INSPIRE].

    Article  ADS  Google Scholar 

  94. Y. Hatta and E. Iancu, Collinearly improved JIMWLK evolution in Langevin form, JHEP 08 (2016) 083 [arXiv:1606.03269] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  95. G.A. Chirilli, B.-W. Xiao and F. Yuan, One-loop factorization for inclusive hadron production in pA collisions in the saturation formalism, Phys. Rev. Lett. 108 (2012) 122301 [arXiv:1112.1061] [INSPIRE].

  96. G.A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive hadron productions in pA collisions, Phys. Rev. D 86 (2012) 054005 [arXiv:1203.6139] [INSPIRE].

  97. I. Balitsky and G.A. Chirilli, Photon impact factor in the next-to-leading order, Phys. Rev. D 83 (2011) 031502 [arXiv:1009.4729] [INSPIRE].

  98. I. Balitsky and G.A. Chirilli, Photon impact factor and kT-factorization for DIS in the next-to-leading order, Phys. Rev. D 87 (2013) 014013 [arXiv:1207.3844] [INSPIRE].

  99. G. Beuf, NLO corrections for the dipole factorization of DIS structure functions at low x, Phys. Rev. D 85 (2012) 034039 [arXiv:1112.4501] [INSPIRE].

  100. G. Beuf, Dipole factorization for DIS at NLO: loop correction to the \( {\gamma}_{TL}^{\ast } \) → \( q\overline{q} \) light-front wave functions, Phys. Rev. D 94 (2016) 054016 [arXiv:1606.00777] [INSPIRE].

  101. G. Beuf, Dipole factorization for DIS at NLO: combining the \( q\overline{q} \) and \( q\overline{q}g \) contributions, Phys. Rev. D 96 (2017) 074033 [arXiv:1708.06557] [INSPIRE].

  102. H. Hänninen, T. Lappi and R. Paatelainen, One-loop corrections to light cone wave functions: the dipole picture DIS cross section, Annals Phys. 393 (2018) 358 [arXiv:1711.08207] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  103. G. Beuf, T. Lappi and R. Paatelainen, Massive quarks in NLO dipole factorization for DIS: longitudinal photon, Phys. Rev. D 104 (2021) 056032 [arXiv:2103.14549] [INSPIRE].

  104. G. Beuf, T. Lappi and R. Paatelainen, Massive quarks at one loop in the dipole picture of deep inelastic scattering, Phys. Rev. Lett. 129 (2022) 072001 [arXiv:2112.03158] [INSPIRE].

  105. G. Beuf, T. Lappi and R. Paatelainen, Massive quarks in NLO dipole factorization for DIS: transverse photon, Phys. Rev. D 106 (2022) 034013 [arXiv:2204.02486] [INSPIRE].

  106. R. Boussarie, A.V. Grabovsky, D.Y. Ivanov, L. Szymanowski and S. Wallon, Next-to-leading order computation of exclusive diffractive light vector meson production in a saturation framework, Phys. Rev. Lett. 119 (2017) 072002 [arXiv:1612.08026] [INSPIRE].

  107. H. Mäntysaari and J. Penttala, Exclusive production of light vector mesons at next-to-leading order in the dipole picture, Phys. Rev. D 105 (2022) 114038 [arXiv:2203.16911] [INSPIRE].

  108. H. Mäntysaari and J. Penttala, Exclusive heavy vector meson production at next-to-leading order in the dipole picture, Phys. Lett. B 823 (2021) 136723 [arXiv:2104.02349] [INSPIRE].

  109. K. Roy and R. Venugopalan, NLO impact factor for inclusive photon + dijet production in e+A DIS at small x, Phys. Rev. D 101 (2020) 034028 [arXiv:1911.04530] [INSPIRE].

  110. R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, On the one loop γ(*) → \( q\overline{q} \) impact factor and the exclusive diffractive cross sections for the production of two or three jets, JHEP 11 (2016) 149 [arXiv:1606.00419] [INSPIRE].

  111. I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].

  112. A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].

  113. A. Kovner, M. Lublinsky and Y. Mulian, NLO JIMWLK evolution unabridged, JHEP 08 (2014) 114 [arXiv:1405.0418] [INSPIRE].

    Article  ADS  Google Scholar 

  114. M. Lublinsky and Y. Mulian, High energy QCD at NLO: from light-cone wave function to JIMWLK evolution, JHEP 05 (2017) 097 [arXiv:1610.03453] [INSPIRE].

    Article  ADS  Google Scholar 

  115. A.H. Mueller, Small x behavior and parton saturation: a QCD model, Nucl. Phys. B 335 (1990) 115 [INSPIRE].

    Article  ADS  Google Scholar 

  116. N.N. Nikolaev and B.G. Zakharov, Color transparency and scaling properties of nuclear shadowing in deep inelastic scattering, Z. Phys. C 49 (1991) 607 [INSPIRE].

    Article  Google Scholar 

  117. F. Dominguez, A.H. Mueller, S. Munier and B.-W. Xiao, On the small-x evolution of the color quadrupole and the Weizsäcker-Williams gluon distribution, Phys. Lett. B 705 (2011) 106 [arXiv:1108.1752] [INSPIRE].

    Article  ADS  Google Scholar 

  118. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

  119. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Workshop on Monte Carlo generators for HERA physics (plenary starting meeting), (1998), p. 270 [hep-ph/9907280] [INSPIRE].

  120. F. Salazar, Dijet production in DIS at one-loop in the CGC, seminar at the University of Jyväskylä, https://indico.cern.ch/event/1121597/, Jyväskylä, Finland, March 2022.

  121. R.F. del Castillo, M.G. Echevarria, Y. Makris and I. Scimemi, TMD factorization for dijet and heavy-meson pair in DIS, JHEP 01 (2021) 088 [arXiv:2008.07531] [INSPIRE].

    Article  Google Scholar 

  122. R.F. del Castillo, M.G. Echevarria, Y. Makris and I. Scimemi, Transverse momentum dependent distributions in dijet and heavy hadron pair production at EIC, JHEP 03 (2022) 047 [arXiv:2111.03703] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre de Physique Théorique, École polytechnique, CNRS, I.P. Paris, F-91128, Palaiseau, France

    Pieter Taels & Cyrille Marquet

  2. Departement fysica, Universiteit Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium

    Pieter Taels

  3. Theoretical Physics Division, National Centre for Nuclear Research, Pasteura 7, 02-093, Warsaw, Poland

    Tolga Altinoluk & Guillaume Beuf

Authors
  1. Pieter Taels
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tolga Altinoluk
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Guillaume Beuf
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Cyrille Marquet
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pieter Taels.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2204.11650

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taels, P., Altinoluk, T., Beuf, G. et al. Dijet photoproduction at low x at next-to-leading order and its back-to-back limit. J. High Energ. Phys. 2022, 184 (2022). https://doi.org/10.1007/JHEP10(2022)184

Download citation

  • Received: 28 June 2022

  • Accepted: 17 October 2022

  • Published: 28 October 2022

  • DOI: https://doi.org/10.1007/JHEP10(2022)184

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering or Small-x Physics
  • Effective Field Theories of QCD
  • Higher-Order Perturbative Calculations
  • Resummation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

192.68.51.226

Polish Consortium ICM University of Warsaw (3000169041) - National Centre for Nuclear Research (3000197366) - Polish Consortium ICM University of Warsaw (3003616166)

Springer Nature

© 2024 Springer Nature