Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Reggeon field theory and self duality: making ends meet

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 28 October 2020
  • Volume 2020, article number 185, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Reggeon field theory and self duality: making ends meet
Download PDF
  • Alex Kovner1,
  • Eugene Levin2,3,
  • Ming Li  ORCID: orcid.org/0000-0001-9550-96911 &
  • …
  • Michael Lublinsky4 
  • 268 Accesses

  • 6 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Motivated by the question of unitarity of Reggeon Field Theory, we use the effective field theory philosophy to find possible Reggeon Field Theory Hamiltonians HRFT. We require that HRFT is self dual, reproduce all known limits (dilute-dense and dilute-dilute) and exhibits all the symmetries of the JIMWLK Hamiltonian. We find a family of Hamiltonians which satisfy all the above requirements. One of these is identical in form to the so called “diamond action” discussed in [67, 68]. However we show by explicit calculation that the so called “diamond condition” is not satisfied beyond leading perturbative order.

Article PDF

Download to read the full article text

Similar content being viewed by others

Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories

Article 06 February 2017

Classical field theory limit of many-body quantum Gibbs states in 2D and 3D

Article 01 January 2021

Mean field theory for strongly coupled systems: Holographic approach

Article Open access 18 June 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. V.N. Gribov, A reggeon diagram technique, Sov. Phys. JETP 26 (1968) 414 [Zh. Eksp. Teor. Fiz. 53 (1967) 654] [INSPIRE].

  2. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. Ya.Ya. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 22.

    Google Scholar 

  4. L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    ADS  Google Scholar 

  5. A.H. Mueller and J. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].

    ADS  Google Scholar 

  6. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].

    ADS  Google Scholar 

  7. A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].

    ADS  Google Scholar 

  8. A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].

    ADS  Google Scholar 

  9. L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].

    ADS  Google Scholar 

  10. L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].

    ADS  Google Scholar 

  12. R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi - Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].

    ADS  Google Scholar 

  13. R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].

    ADS  Google Scholar 

  14. J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].

    ADS  Google Scholar 

  15. J. Bartels and M. Wusthoff, The Triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].

    ADS  Google Scholar 

  16. J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].

    ADS  Google Scholar 

  17. C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].

    ADS  Google Scholar 

  18. J. Bartels, High-Energy Behavior in a Nonabelian Gauge Theory (II): First Corrections to Tn→m Beyond the Leading ln s Approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].

    ADS  Google Scholar 

  19. J. Kwiecinski and M. Praszalowicz, Three Gluon Integral Equation and Odd c Singlet Regge Singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].

    ADS  Google Scholar 

  20. A. Kovner, E. Levin, M. Li and M. Lublinsky, The JIMWLK evolution and the s-channel unitarity, JHEP 09 (2020) 199 [arXiv:2006.15126] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. A. Kovner, E. Levin and M. Lublinsky, QCD unitarity constraints on Reggeon Field Theory, JHEP 08 (2016) 031 [arXiv:1605.03251] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

    ADS  Google Scholar 

  23. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

    ADS  Google Scholar 

  24. A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].

    ADS  Google Scholar 

  25. G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].

    ADS  Google Scholar 

  26. Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].

  27. M. Braun, Structure function of the nucleus in the perturbative QCD with N(c) —> infinity (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].

    ADS  Google Scholar 

  28. M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit N(c) —> infinity, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].

    ADS  Google Scholar 

  29. J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].

    ADS  Google Scholar 

  30. J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].

    ADS  Google Scholar 

  31. M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with N(c) → infinity, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].

    ADS  Google Scholar 

  32. M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].

    ADS  Google Scholar 

  33. M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large Nc, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].

    ADS  Google Scholar 

  34. I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].

    ADS  Google Scholar 

  35. Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

    ADS  Google Scholar 

  36. T. Altinoluk, C. Contreras, A. Kovner, E. Levin, M. Lublinsky and A. Shulkim, QCD reggeon calculus from JIMWLK Evolution, Int. J. Mod. Phys. Conf. Ser. 25 (2014) 1460025 [INSPIRE].

    Google Scholar 

  37. T. Altinoluk, N. Armesto, A. Kovner, E. Levin and M. Lublinsky, KLWMIJ Reggeon field theory beyond the large Nc limit, JHEP 08 (2014) 007 [arXiv:1402.5936] [INSPIRE].

    ADS  Google Scholar 

  38. T. Altinoluk, A. Kovner, E. Levin and M. Lublinsky, Reggeon Field Theory for Large Pomeron Loops, JHEP 04 (2014) 075 [arXiv:1401.7431] [INSPIRE].

    ADS  Google Scholar 

  39. T. Altinoluk, C. Contreras, A. Kovner, E. Levin, M. Lublinsky and A. Shulkin, QCD Reggeon Calculus From KLWMIJ/JIMWLK Evolution: Vertices, Reggeization and All, JHEP 09 (2013) 115 [arXiv:1306.2794] [INSPIRE].

    ADS  Google Scholar 

  40. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

    ADS  Google Scholar 

  41. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

    ADS  Google Scholar 

  42. J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

    ADS  Google Scholar 

  43. A. Kovner and J. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].

    ADS  Google Scholar 

  44. A. Kovner, J. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

    ADS  Google Scholar 

  45. H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

    ADS  Google Scholar 

  46. A. Kovner and M. Lublinsky, In pursuit of Pomeron loops: The JIMWLK equation and the Wess-Zumino term, Phys. Rev. D 71 (2005) 085004 [hep-ph/0501198] [INSPIRE].

    ADS  Google Scholar 

  47. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

  48. E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

    ADS  MATH  Google Scholar 

  49. E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

  50. A. Kovner and M. Lublinsky, Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 02 (2007) 058 [hep-ph/0512316] [INSPIRE].

    ADS  Google Scholar 

  51. I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N = 4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].

    ADS  Google Scholar 

  53. A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].

    ADS  Google Scholar 

  54. A. Kovner, M. Lublinsky and Y. Mulian, NLO JIMWLK evolution unabridged, JHEP 08 (2014) 114 [arXiv:1405.0418] [INSPIRE].

    ADS  Google Scholar 

  55. M. Lublinsky and Y. Mulian, High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution, JHEP 05 (2017) 097 [arXiv:1610.03453] [INSPIRE].

    ADS  Google Scholar 

  56. S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03 (2018) 036 [arXiv:1501.03754] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. S. Caron-Huot and M. Herranen, High-energy evolution to three loops, JHEP 02 (2018) 058 [arXiv:1604.07417] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. A.H. Mueller and A.I. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].

    ADS  MATH  Google Scholar 

  59. E. Iancu and A.H. Mueller, Rare fluctuations and the high-energy limit of the S matrix in QCD, Nucl. Phys. A 730 (2004) 494 [hep-ph/0309276] [INSPIRE].

    ADS  MATH  Google Scholar 

  60. E. Iancu and D.N. Triantafyllopoulos, A Langevin equation for high energy evolution with Pomeron loops, Nucl. Phys. A 756 (2005) 419 [hep-ph/0411405] [INSPIRE].

    ADS  Google Scholar 

  61. E. Iancu and D.N. Triantafyllopoulos, Non-linear QCD evolution with improved triple-Pomeron vertices, Phys. Lett. B 610 (2005) 253 [hep-ph/0501193] [INSPIRE].

    ADS  Google Scholar 

  62. A.H. Mueller, A.I. Shoshi and S.M.H. Wong, Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B 715 (2005) 440 [hep-ph/0501088] [INSPIRE].

    ADS  Google Scholar 

  63. E. Levin and M. Lublinsky, Towards a symmetric approach to high energy evolution: Generating functional with Pomeron loops, Nucl. Phys. A 763 (2005) 172 [hep-ph/0501173] [INSPIRE].

    ADS  Google Scholar 

  64. E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].

    ADS  Google Scholar 

  65. E. Iancu, G. Soyez and D.N. Triantafyllopoulos, On the probabilistic interpretation of the evolution equations with Pomeron loops in QCD, Nucl. Phys. A 768 (2006) 194 [hep-ph/0510094] [INSPIRE].

    ADS  Google Scholar 

  66. A. Kovner and M. Lublinsky, From target to projectile and back again: Selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].

    ADS  Google Scholar 

  67. Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].

    ADS  Google Scholar 

  68. I. Balitsky, High-energy effective action from scattering of QCD shock waves, Phys. Rev. D 72 (2005) 074027 [hep-ph/0507237] [INSPIRE].

    ADS  Google Scholar 

  69. A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].

    ADS  Google Scholar 

  70. M. Li and A. Kovner, JIMWLK Evolution, Lindblad Equation and Quantum-Classical Correspondence, JHEP 05 (2020) 036 [arXiv:2002.02282] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  71. S. Bondarenko and L. Motyka, Solving effective field theory of interacting QCD Pomerons in the semi-classical approximation, Phys. Rev. D 75 (2007) 114015 [hep-ph/0605185] [INSPIRE].

    ADS  Google Scholar 

  72. A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].

    ADS  Google Scholar 

  73. A. Kovner and M. Lublinsky, Remarks on high energy evolution, JHEP 03 (2005) 001 [hep-ph/0502071] [INSPIRE].

    ADS  Google Scholar 

  74. A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].

    ADS  Google Scholar 

  75. O.V. Kancheli, Parton models and frame independence of high-energy cross-sections, arXiv:2003.04654 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT, 06269, USA

    Alex Kovner & Ming Li

  2. Departemento de Física, Universidad Técnica Federico Santa María, and Centro Científico-Tecnológico de Valparaíso, Avda. Espana 1680, Casilla 110-V, Valparaíso, Chile

    Eugene Levin

  3. Department of Particle Physics, Tel Aviv University, 69978, Tel Aviv, Israel

    Eugene Levin

  4. Physics Department, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel

    Michael Lublinsky

Authors
  1. Alex Kovner
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eugene Levin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ming Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Michael Lublinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ming Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.12132

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovner, A., Levin, E., Li, M. et al. Reggeon field theory and self duality: making ends meet. J. High Energ. Phys. 2020, 185 (2020). https://doi.org/10.1007/JHEP10(2020)185

Download citation

  • Received: 27 July 2020

  • Revised: 10 September 2020

  • Accepted: 24 September 2020

  • Published: 28 October 2020

  • DOI: https://doi.org/10.1007/JHEP10(2020)185

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Perturbative QCD
  • Resummation
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

192.68.51.226

Polish Consortium ICM University of Warsaw (3000169041) - National Centre for Nuclear Research (3000197366) - Polish Consortium ICM University of Warsaw (3003616166)

Springer Nature

© 2024 Springer Nature