Abstract
Motivated by the question of unitarity of Reggeon Field Theory, we use the effective field theory philosophy to find possible Reggeon Field Theory Hamiltonians HRFT. We require that HRFT is self dual, reproduce all known limits (dilute-dense and dilute-dilute) and exhibits all the symmetries of the JIMWLK Hamiltonian. We find a family of Hamiltonians which satisfy all the above requirements. One of these is identical in form to the so called “diamond action” discussed in [67, 68]. However we show by explicit calculation that the so called “diamond condition” is not satisfied beyond leading perturbative order.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
V.N. Gribov, A reggeon diagram technique, Sov. Phys. JETP 26 (1968) 414 [Zh. Eksp. Teor. Fiz. 53 (1967) 654] [INSPIRE].
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].
Ya.Ya. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 22.
L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].
A.H. Mueller and J. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].
A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].
A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].
A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].
L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].
L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi - Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].
R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].
J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].
J. Bartels and M. Wusthoff, The Triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].
J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].
C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].
J. Bartels, High-Energy Behavior in a Nonabelian Gauge Theory (II): First Corrections to Tn→m Beyond the Leading ln s Approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].
J. Kwiecinski and M. Praszalowicz, Three Gluon Integral Equation and Odd c Singlet Regge Singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].
A. Kovner, E. Levin, M. Li and M. Lublinsky, The JIMWLK evolution and the s-channel unitarity, JHEP 09 (2020) 199 [arXiv:2006.15126] [INSPIRE].
A. Kovner, E. Levin and M. Lublinsky, QCD unitarity constraints on Reggeon Field Theory, JHEP 08 (2016) 031 [arXiv:1605.03251] [INSPIRE].
L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].
G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].
Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].
M. Braun, Structure function of the nucleus in the perturbative QCD with N(c) —> infinity (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].
M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit N(c) —> infinity, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].
J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].
J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].
M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with N(c) → infinity, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].
M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].
M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large Nc, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].
I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
T. Altinoluk, C. Contreras, A. Kovner, E. Levin, M. Lublinsky and A. Shulkim, QCD reggeon calculus from JIMWLK Evolution, Int. J. Mod. Phys. Conf. Ser. 25 (2014) 1460025 [INSPIRE].
T. Altinoluk, N. Armesto, A. Kovner, E. Levin and M. Lublinsky, KLWMIJ Reggeon field theory beyond the large Nc limit, JHEP 08 (2014) 007 [arXiv:1402.5936] [INSPIRE].
T. Altinoluk, A. Kovner, E. Levin and M. Lublinsky, Reggeon Field Theory for Large Pomeron Loops, JHEP 04 (2014) 075 [arXiv:1401.7431] [INSPIRE].
T. Altinoluk, C. Contreras, A. Kovner, E. Levin, M. Lublinsky and A. Shulkin, QCD Reggeon Calculus From KLWMIJ/JIMWLK Evolution: Vertices, Reggeization and All, JHEP 09 (2013) 115 [arXiv:1306.2794] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].
A. Kovner and J. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].
A. Kovner, J. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].
H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].
A. Kovner and M. Lublinsky, In pursuit of Pomeron loops: The JIMWLK equation and the Wess-Zumino term, Phys. Rev. D 71 (2005) 085004 [hep-ph/0501198] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].
A. Kovner and M. Lublinsky, Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 02 (2007) 058 [hep-ph/0512316] [INSPIRE].
I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N = 4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [INSPIRE].
I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].
A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].
A. Kovner, M. Lublinsky and Y. Mulian, NLO JIMWLK evolution unabridged, JHEP 08 (2014) 114 [arXiv:1405.0418] [INSPIRE].
M. Lublinsky and Y. Mulian, High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution, JHEP 05 (2017) 097 [arXiv:1610.03453] [INSPIRE].
S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03 (2018) 036 [arXiv:1501.03754] [INSPIRE].
S. Caron-Huot and M. Herranen, High-energy evolution to three loops, JHEP 02 (2018) 058 [arXiv:1604.07417] [INSPIRE].
A.H. Mueller and A.I. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].
E. Iancu and A.H. Mueller, Rare fluctuations and the high-energy limit of the S matrix in QCD, Nucl. Phys. A 730 (2004) 494 [hep-ph/0309276] [INSPIRE].
E. Iancu and D.N. Triantafyllopoulos, A Langevin equation for high energy evolution with Pomeron loops, Nucl. Phys. A 756 (2005) 419 [hep-ph/0411405] [INSPIRE].
E. Iancu and D.N. Triantafyllopoulos, Non-linear QCD evolution with improved triple-Pomeron vertices, Phys. Lett. B 610 (2005) 253 [hep-ph/0501193] [INSPIRE].
A.H. Mueller, A.I. Shoshi and S.M.H. Wong, Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B 715 (2005) 440 [hep-ph/0501088] [INSPIRE].
E. Levin and M. Lublinsky, Towards a symmetric approach to high energy evolution: Generating functional with Pomeron loops, Nucl. Phys. A 763 (2005) 172 [hep-ph/0501173] [INSPIRE].
E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].
E. Iancu, G. Soyez and D.N. Triantafyllopoulos, On the probabilistic interpretation of the evolution equations with Pomeron loops in QCD, Nucl. Phys. A 768 (2006) 194 [hep-ph/0510094] [INSPIRE].
A. Kovner and M. Lublinsky, From target to projectile and back again: Selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].
Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].
I. Balitsky, High-energy effective action from scattering of QCD shock waves, Phys. Rev. D 72 (2005) 074027 [hep-ph/0507237] [INSPIRE].
A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].
M. Li and A. Kovner, JIMWLK Evolution, Lindblad Equation and Quantum-Classical Correspondence, JHEP 05 (2020) 036 [arXiv:2002.02282] [INSPIRE].
S. Bondarenko and L. Motyka, Solving effective field theory of interacting QCD Pomerons in the semi-classical approximation, Phys. Rev. D 75 (2007) 114015 [hep-ph/0605185] [INSPIRE].
A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].
A. Kovner and M. Lublinsky, Remarks on high energy evolution, JHEP 03 (2005) 001 [hep-ph/0502071] [INSPIRE].
A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].
O.V. Kancheli, Parton models and frame independence of high-energy cross-sections, arXiv:2003.04654 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2007.12132
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Kovner, A., Levin, E., Li, M. et al. Reggeon field theory and self duality: making ends meet. J. High Energ. Phys. 2020, 185 (2020). https://doi.org/10.1007/JHEP10(2020)185
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2020)185