Abstract
Further developing ideas set forth in [1], we discuss QCD Reggeon Field Theory (RFT) and formulate restrictions imposed on its Hamiltonian by the unitarity of underlying QCD. We identify explicitly the QCD RFT Hilbert space, provide algebra of the basic degrees of freedom (Wilson lines and their duals) and the algorithm for calculating the scattering amplitudes. We formulate conditions imposed on the “Fock states” of RFT by unitary nature of QCD, and explain how these constraints appear as unitarity constraints on possible RFT hamiltonians that generate energy evolution of scattering amplitudes. We study the realization of these constraints in the dense-dilute limit of RFT where the appropriate Hamiltonian is the JIMWLK Hamiltonian HJIMWLK. We find that the action HJIMWLK on the dilute projectile states is unitary, but acting on dense “target” states it violates unitarity and generates states with negative probabilities through energy evolution.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Kovner, E. Levin and M. Lublinsky, QCD unitarity constraints on Reggeon Field Theory, JHEP 08 (2016) 031 [arXiv:1605.03251] [INSPIRE].
V.N. Gribov, A Reggeon Diagram Technique, Sov. Phys. JETP 26 (1968) 414 [Zh. Eksp. Teor. Fiz. 53 (1967) 654] [INSPIRE].
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
L.V. Gribov, E. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].
A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].
A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].
A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].
A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].
L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].
L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi-Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].
R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].
J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].
J. Bartels and M. Wusthoff, The Triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].
J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].
C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].
J. Bartels, High-Energy Behavior in a Nonabelian Gauge Theory (II): First Corrections to Tn→m Beyond the Leading ln s Approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].
J. Kwiecinski and M. Praszalowicz, Three Gluon Integral Equation and Odd c Singlet Regge Singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].
L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].
G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].
Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].
M.A. Braun, Structure function of the nucleus in the perturbative QCD with Nc → ∞ (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].
M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit Nc → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].
J. Bartels, M.A. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].
J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Möbius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].
M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with Nc → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].
M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].
M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large Nc, Phys. Lett. B 632 (2006) 297 [Eur. Phys. J. C 48 (2006) 511] [hep-ph/0512057] [INSPIRE].
I.I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
I.I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
Y.V. Kovchegov, Small-x F2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
A. Kovner and M. Lublinsky, Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 02 (2007) 058 [hep-ph/0512316] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].
A. Kovner and J.G. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].
A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].
H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
E. Ferreiro, E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].
L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].
L.L. Frankfurt and V.E. Sherman, Reggeization of Vector Meson and Vacuum Singularity in Renormalizable Yang-Mills Models, Sov. J. Nucl. Phys. 23 (1976) 581 [INSPIRE].
V.S. Fadin, M.I. Kotsky and R. Fiore, Gluon Reggeization in QCD in the next-to-leading order, Phys. Lett. B 359 (1995) 181 [INSPIRE].
S. Bondarenko and L. Motyka, Solving effective field theory of interacting QCD Pomerons in the semi-classical approximation, Phys. Rev. D 75 (2007) 114015 [hep-ph/0605185] [INSPIRE].
M.A. Braun and A. Tarasov, BFKL Pomeron propagator in the external field of the nucleus, Nucl. Phys. B 851 (2011) 533 [arXiv:1103.1747] [INSPIRE].
M.A. Braun and A.N. Tarasov, BFKL Pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD, Nucl. Phys. B 863 (2012) 495 [arXiv:1204.6066] [INSPIRE].
A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].
D. Amati, L. Caneschi and R. Jengo, Summing Pomeron Trees, Nucl. Phys. B 101 (1975) 397 [INSPIRE].
V. Alessandrini, D. Amati and R. Jengo, One-Dimensional Quantum Theory of the Pomeron, Nucl. Phys. B 108 (1976) 425 [INSPIRE].
R. Jengo, Zero Slope Limit of the Pomeron Field Theory, Nucl. Phys. B 108 (1976) 447 [INSPIRE].
D. Amati, M. Le Bellac, G. Marchesini and M. Ciafaloni, Reggeon Field Theory for α(0) > 1, Nucl. Phys. B 112 (1976) 107 [INSPIRE].
M. Ciafaloni, M. Le Bellac and G.C. Rossi, Reggeon Quantum Mechanics: A Critical Discussion, Nucl. Phys. B 130 (1977) 388 [INSPIRE].
M. Ciafaloni, Instanton Contributions in Reggeon Quantum Mechanics, Nucl. Phys. B 146 (1978) 427 [INSPIRE].
M. Kozlov and E. Levin, Solution for the BFKL Pomeron Calculus in zero transverse dimensions, Nucl. Phys. A 779 (2006) 142 [hep-ph/0604039] [INSPIRE].
A.I. Shoshi and B.-W. Xiao, Pomeron loops in zero transverse dimensions, Phys. Rev. D 73 (2006) 094014 [hep-ph/0512206] [INSPIRE].
J.-P. Blaizot, E. Iancu and D.N. Triantafyllopoulos, A Zero-dimensional model for high-energy scattering in QCD, Nucl. Phys. A 784 (2007) 227 [hep-ph/0606253] [INSPIRE].
N. Armesto, S. Bondarenko, J.G. Milhano and P. Quiroga, Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD, JHEP 05 (2008) 103 [arXiv:0803.0820] [INSPIRE].
E. Levin and A. Prygarin, The BFKL Pomeron Calculus in zero transverse dimension: Summation of the Pomeron loops and the generating functional for the multiparticle production processes, Eur. Phys. J. C 53 (2008) 385 [hep-ph/0701178] [INSPIRE].
A. Kovner and M. Lublinsky, From target to projectile and back again: Selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].
A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].
A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].
A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].
Y.V. Kovchegov, Quantum structure of the nonAbelian Weizsacker-Williams field for a very large nucleus, Phys. Rev. D 55 (1997) 5445 [hep-ph/9701229] [INSPIRE].
A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].
A. Kovner, M. Lublinsky and U. Wiedemann, From bubbles to foam: Dilute to dense evolution of hadronic wave function at high energy, JHEP 06 (2007) 075 [arXiv:0705.1713] [INSPIRE].
T. Altinoluk, A. Kovner, M. Lublinsky and J. Peressutti, QCD Reggeon Field Theory for every day: Pomeron loops included, JHEP 03 (2009) 109 [arXiv:0901.2559] [INSPIRE].
Y. Hatta, E. Iancu, L.D. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].
I.I. Balitsky, High-energy effective action from scattering of QCD shock waves, Phys. Rev. D 72 (2005) 074027 [hep-ph/0507237] [INSPIRE].
F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions, Phys. Rev. D 78 (2008) 054019 [arXiv:0804.2630] [INSPIRE].
H.E. Haber, Useful relations among the generators in the defining and adjoint representations of SU(N), arXiv:1912.13302 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2006.15126
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Kovner, A., Levin, E., Li, M. et al. The JIMWLK evolution and the s-channel unitarity. J. High Energ. Phys. 2020, 199 (2020). https://doi.org/10.1007/JHEP09(2020)199
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2020)199