Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The JIMWLK evolution and the s-channel unitarity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 30 September 2020
  • Volume 2020, article number 199, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The JIMWLK evolution and the s-channel unitarity
Download PDF
  • Alex Kovner1,
  • Eugene Levin2,3,
  • Ming Li  ORCID: orcid.org/0000-0001-9550-96911 &
  • …
  • Michael Lublinsky1,4 
  • 238 Accesses

  • 6 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Further developing ideas set forth in [1], we discuss QCD Reggeon Field Theory (RFT) and formulate restrictions imposed on its Hamiltonian by the unitarity of underlying QCD. We identify explicitly the QCD RFT Hilbert space, provide algebra of the basic degrees of freedom (Wilson lines and their duals) and the algorithm for calculating the scattering amplitudes. We formulate conditions imposed on the “Fock states” of RFT by unitary nature of QCD, and explain how these constraints appear as unitarity constraints on possible RFT hamiltonians that generate energy evolution of scattering amplitudes. We study the realization of these constraints in the dense-dilute limit of RFT where the appropriate Hamiltonian is the JIMWLK Hamiltonian HJIMWLK. We find that the action HJIMWLK on the dilute projectile states is unitary, but acting on dense “target” states it violates unitarity and generates states with negative probabilities through energy evolution.

Article PDF

Download to read the full article text

Similar content being viewed by others

Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel

Article 21 March 2018

QCD: The Theory of Strong Interactions

Chapter © 2017

Jacques Raynal: memories of a physicist

Article 25 August 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. Kovner, E. Levin and M. Lublinsky, QCD unitarity constraints on Reggeon Field Theory, JHEP 08 (2016) 031 [arXiv:1605.03251] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. V.N. Gribov, A Reggeon Diagram Technique, Sov. Phys. JETP 26 (1968) 414 [Zh. Eksp. Teor. Fiz. 53 (1967) 654] [INSPIRE].

  3. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  4. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

  5. L.V. Gribov, E. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  6. A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].

    Article  ADS  Google Scholar 

  7. A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].

  8. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].

    Article  ADS  Google Scholar 

  9. A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].

  10. A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].

  11. L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].

  12. L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].

  14. R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi-Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Bartels and M. Wusthoff, The Triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].

  19. C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].

  20. J. Bartels, High-Energy Behavior in a Nonabelian Gauge Theory (II): First Corrections to Tn→m Beyond the Leading ln s Approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Kwiecinski and M. Praszalowicz, Three Gluon Integral Equation and Odd c Singlet Regge Singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

  23. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

  24. A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].

  25. G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].

  26. Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].

  27. M.A. Braun, Structure function of the nucleus in the perturbative QCD with Nc → ∞ (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].

  28. M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit Nc → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].

  29. J. Bartels, M.A. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].

  30. J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Möbius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].

  31. M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with Nc → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].

  32. M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].

  33. M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large Nc, Phys. Lett. B 632 (2006) 297 [Eur. Phys. J. C 48 (2006) 511] [hep-ph/0512057] [INSPIRE].

  34. I.I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

  35. I.I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].

  36. Y.V. Kovchegov, Small-x F2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

  37. A. Kovner and M. Lublinsky, Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 02 (2007) 058 [hep-ph/0512316] [INSPIRE].

  38. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

  39. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

  40. J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

  41. A. Kovner and J.G. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].

  42. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

  43. H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

  44. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

  45. E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

  46. E. Ferreiro, E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

  47. L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].

  48. L.L. Frankfurt and V.E. Sherman, Reggeization of Vector Meson and Vacuum Singularity in Renormalizable Yang-Mills Models, Sov. J. Nucl. Phys. 23 (1976) 581 [INSPIRE].

    Google Scholar 

  49. V.S. Fadin, M.I. Kotsky and R. Fiore, Gluon Reggeization in QCD in the next-to-leading order, Phys. Lett. B 359 (1995) 181 [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Bondarenko and L. Motyka, Solving effective field theory of interacting QCD Pomerons in the semi-classical approximation, Phys. Rev. D 75 (2007) 114015 [hep-ph/0605185] [INSPIRE].

  51. M.A. Braun and A. Tarasov, BFKL Pomeron propagator in the external field of the nucleus, Nucl. Phys. B 851 (2011) 533 [arXiv:1103.1747] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M.A. Braun and A.N. Tarasov, BFKL Pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD, Nucl. Phys. B 863 (2012) 495 [arXiv:1204.6066] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].

  54. D. Amati, L. Caneschi and R. Jengo, Summing Pomeron Trees, Nucl. Phys. B 101 (1975) 397 [INSPIRE].

    Article  ADS  Google Scholar 

  55. V. Alessandrini, D. Amati and R. Jengo, One-Dimensional Quantum Theory of the Pomeron, Nucl. Phys. B 108 (1976) 425 [INSPIRE].

    Article  ADS  Google Scholar 

  56. R. Jengo, Zero Slope Limit of the Pomeron Field Theory, Nucl. Phys. B 108 (1976) 447 [INSPIRE].

    Article  ADS  Google Scholar 

  57. D. Amati, M. Le Bellac, G. Marchesini and M. Ciafaloni, Reggeon Field Theory for α(0) > 1, Nucl. Phys. B 112 (1976) 107 [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Ciafaloni, M. Le Bellac and G.C. Rossi, Reggeon Quantum Mechanics: A Critical Discussion, Nucl. Phys. B 130 (1977) 388 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Ciafaloni, Instanton Contributions in Reggeon Quantum Mechanics, Nucl. Phys. B 146 (1978) 427 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. M. Kozlov and E. Levin, Solution for the BFKL Pomeron Calculus in zero transverse dimensions, Nucl. Phys. A 779 (2006) 142 [hep-ph/0604039] [INSPIRE].

  61. A.I. Shoshi and B.-W. Xiao, Pomeron loops in zero transverse dimensions, Phys. Rev. D 73 (2006) 094014 [hep-ph/0512206] [INSPIRE].

  62. J.-P. Blaizot, E. Iancu and D.N. Triantafyllopoulos, A Zero-dimensional model for high-energy scattering in QCD, Nucl. Phys. A 784 (2007) 227 [hep-ph/0606253] [INSPIRE].

  63. N. Armesto, S. Bondarenko, J.G. Milhano and P. Quiroga, Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD, JHEP 05 (2008) 103 [arXiv:0803.0820] [INSPIRE].

    Article  ADS  Google Scholar 

  64. E. Levin and A. Prygarin, The BFKL Pomeron Calculus in zero transverse dimension: Summation of the Pomeron loops and the generating functional for the multiparticle production processes, Eur. Phys. J. C 53 (2008) 385 [hep-ph/0701178] [INSPIRE].

  65. A. Kovner and M. Lublinsky, From target to projectile and back again: Selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].

  66. A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].

  67. A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].

  68. A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].

  69. Y.V. Kovchegov, Quantum structure of the nonAbelian Weizsacker-Williams field for a very large nucleus, Phys. Rev. D 55 (1997) 5445 [hep-ph/9701229] [INSPIRE].

  70. A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].

  71. A. Kovner, M. Lublinsky and U. Wiedemann, From bubbles to foam: Dilute to dense evolution of hadronic wave function at high energy, JHEP 06 (2007) 075 [arXiv:0705.1713] [INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Altinoluk, A. Kovner, M. Lublinsky and J. Peressutti, QCD Reggeon Field Theory for every day: Pomeron loops included, JHEP 03 (2009) 109 [arXiv:0901.2559] [INSPIRE].

    Article  ADS  Google Scholar 

  73. Y. Hatta, E. Iancu, L.D. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].

  74. I.I. Balitsky, High-energy effective action from scattering of QCD shock waves, Phys. Rev. D 72 (2005) 074027 [hep-ph/0507237] [INSPIRE].

  75. F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions, Phys. Rev. D 78 (2008) 054019 [arXiv:0804.2630] [INSPIRE].

  76. H.E. Haber, Useful relations among the generators in the defining and adjoint representations of SU(N), arXiv:1912.13302 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT, 06269, USA

    Alex Kovner, Ming Li & Michael Lublinsky

  2. Departemento de Física, Universidad Técnica Federico Santa María, and Centro Científico-Tecnológico de Valparaíso, Avda. Espana 1680, Casilla 110-V, Valparaíso, Chile

    Eugene Levin

  3. Department of Particle Physics, Tel Aviv University, 69978, Tel Aviv, Israel

    Eugene Levin

  4. Physics Department, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel

    Michael Lublinsky

Authors
  1. Alex Kovner
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eugene Levin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ming Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Michael Lublinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ming Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.15126

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovner, A., Levin, E., Li, M. et al. The JIMWLK evolution and the s-channel unitarity. J. High Energ. Phys. 2020, 199 (2020). https://doi.org/10.1007/JHEP09(2020)199

Download citation

  • Received: 29 June 2020

  • Revised: 26 August 2020

  • Accepted: 01 September 2020

  • Published: 30 September 2020

  • DOI: https://doi.org/10.1007/JHEP09(2020)199

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Perturbative QCD
  • Resummation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

192.68.51.226

Polish Consortium ICM University of Warsaw (3000169041) - National Centre for Nuclear Research (3000197366) - Polish Consortium ICM University of Warsaw (3003616166)

Springer Nature

© 2024 Springer Nature