Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

NLO JIMWLK evolution with massive quarks

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 15 July 2022
  • Volume 2022, article number 93, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
NLO JIMWLK evolution with massive quarks
Download PDF
  • Lin Dai1,2 &
  • Michael Lublinsky  ORCID: orcid.org/0000-0003-3594-25431 
  • 161 Accesses

  • 5 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

NLO evolution of the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation with massless quarks was derived a few years ago. We make a step further to compute the evolution kernels focusing on the effects due to finite quark masses. To this goal, the light-cone wave function of a fast moving dilute hadronic projectile is computed up to \( \mathcal{O} \)(g3) in QCD coupling constant. Compared with the massless case, a new IR divergence emerges, which is eventually canceled by a mass dependent counter term. Our results extend the theoretical tools used in physics of gluon saturation and aim at improving precision in future phenomenological applications.

Article PDF

Download to read the full article text

Similar content being viewed by others

Not all that is β0 is β-function: the DGLAP resummation and the running coupling in NLO JIMWLK

Article Open access 16 July 2024

On systematic effects in the numerical solutions of the JIMWLK equation

Article Open access 29 July 2021

High energy QCD at NLO: from light-cone wave function to JIMWLK evolution

Article Open access 17 May 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

  2. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

  3. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

  4. E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

  5. J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

  6. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

  7. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

  8. I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].

  9. Y.V. Kovchegov, Small x F2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

  10. I. Balitsky and G.A. Chirilli, Next-to-leading order evolution of color dipoles, Phys. Rev. D 77 (2008) 014019 [arXiv:0710.4330] [INSPIRE].

  11. A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704 [arXiv:1310.0378] [INSPIRE].

  12. M. Lublinsky and Y. Mulian, High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution, JHEP 05 (2017) 097 [arXiv:1610.03453] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Lappi and H. Mäntysaari, Direct numerical solution of the coordinate space Balitsky-Kovchegov equation at next to leading order, Phys. Rev. D 91 (2015) 074016 [arXiv:1502.02400] [INSPIRE].

  14. G. Beuf, H. Hänninen, T. Lappi and H. Mäntysaari, Color Glass Condensate at next-to-leading order meets HERA data, Phys. Rev. D 102 (2020) 074028 [arXiv:2007.01645] [INSPIRE].

  15. K. Kutak and A.M. Stasto, Unintegrated gluon distribution from modified BK equation, Eur. Phys. J. C 41 (2005) 343 [hep-ph/0408117] [INSPIRE].

  16. L. Motyka and A.M. Stasto, Exact kinematics in the small x evolution of the color dipole and gluon cascade, Phys. Rev. D 79 (2009) 085016 [arXiv:0901.4949] [INSPIRE].

  17. G. Beuf, Improving the kinematics for low-x QCD evolution equations in coordinate space, Phys. Rev. D 89 (2014) 074039 [arXiv:1401.0313] [INSPIRE].

  18. E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Resumming double logarithms in the QCD evolution of color dipoles, Phys. Lett. B 744 (2015) 293 [arXiv:1502.05642] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Collinearly-improved BK evolution meets the HERA data, Phys. Lett. B 750 (2015) 643 [arXiv:1507.03651] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Sabio Vera, An ‘All-poles’ approximation to collinear resummations in the Regge limit of perturbative QCD, Nucl. Phys. B 722 (2005) 65 [hep-ph/0505128] [INSPIRE].

  21. B. Ducloué, E. Iancu, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Non-linear evolution in QCD at high-energy beyond leading order, JHEP 04 (2019) 081 [arXiv:1902.06637] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Ducloué, E. Iancu, G. Soyez and D.N. Triantafyllopoulos, HERA data and collinearly-improved BK dynamics, Phys. Lett. B 803 (2020) 135305 [arXiv:1912.09196] [INSPIRE].

  23. E. Gotsman, E. Levin, M. Lublinsky and U. Maor, Towards a new global QCD analysis: Low x DIS data from nonlinear evolution, Eur. Phys. J. C 27 (2003) 411 [hep-ph/0209074] [INSPIRE].

  24. G. Beuf, T. Lappi and R. Paatelainen, Massive quarks in NLO dipole factorization for DIS: Longitudinal photon, Phys. Rev. D 104 (2021) 056032 [arXiv:2103.14549] [INSPIRE].

  25. S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].

  26. A. Kovner, High energy evolution: The Wave function point of view, Acta Phys. Polon. B 36 (2005) 3551 [hep-ph/0508232] [INSPIRE].

  27. A. Kovner and M. Lublinsky, Remarks on high energy evolution, JHEP 03 (2005) 001 [hep-ph/0502071] [INSPIRE].

  28. W.-M. Zhang and A. Harindranath, Light front QCD. 2: Two component theory, Phys. Rev. D 48 (1993) 4881 [INSPIRE].

  29. W.-M. Zhang and A. Harindranath, Role of longitudinal boundary integrals in light front QCD, Phys. Rev. D 48 (1993) 4868 [hep-th/9302119] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Harindranath and W.-M. Zhang, Light front QCD. 3: Coupling constant renormalization, Phys. Rev. D 48 (1993) 4903 [INSPIRE].

  31. Y.V. Kovchegov and H. Weigert, Quark loop contribution to BFKL evolution: Running coupling and leading-Nf NLO intercept, Nucl. Phys. A 789 (2007) 260 [hep-ph/0612071] [INSPIRE].

  32. V.S. Fadin, R. Fiore, A.V. Grabovsky and A. Papa, The Dipole form of the gluon part of the BFKL kernel, Nucl. Phys. B 784 (2007) 49 [arXiv:0705.1885] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V.S. Fadin, R. Fiore and A. Papa, Difference between standard and quasi-conformal BFKL kernels, Nucl. Phys. B 865 (2012) 67 [arXiv:1206.5596] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.C. Collins, F. Wilczek and A. Zee, Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current, Phys. Rev. D 18 (1978) 242 [INSPIRE].

  35. S. Qian, A new renormalization prescription (CWZ subtraction scheme) for QCD and its application to DIS, ANL-HEP-PR-84-72 (1984).

  36. J.C. Collins and W.-K. Tung, Calculating Heavy Quark Distributions, Nucl. Phys. B 278 (1986) 934 [INSPIRE].

  37. J.C. Collins, Hard scattering factorization with heavy quarks: A General treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel

    Lin Dai & Michael Lublinsky

  2. Physik Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany

    Lin Dai

Authors
  1. Lin Dai
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Michael Lublinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michael Lublinsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2203.13695

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Lublinsky, M. NLO JIMWLK evolution with massive quarks. J. High Energ. Phys. 2022, 93 (2022). https://doi.org/10.1007/JHEP07(2022)093

Download citation

  • Received: 31 March 2022

  • Revised: 14 June 2022

  • Accepted: 17 June 2022

  • Published: 15 July 2022

  • DOI: https://doi.org/10.1007/JHEP07(2022)093

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering or Small-X Physics
  • Quark-Gluon Plasma
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

192.68.51.226

Polish Consortium ICM University of Warsaw (3000169041) - National Centre for Nuclear Research (3000197366) - Polish Consortium ICM University of Warsaw (3003616166)

Springer Nature

© 2024 Springer Nature