Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Nuclei in the toy world: beyond the Pomeron in zero transverse dimensions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 May 2022
  • Volume 2022, article number 19, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Nuclei in the toy world: beyond the Pomeron in zero transverse dimensions
Download PDF
  • Alex Kovner1,2,
  • Eugene Levin2,3 &
  • Michael Lublinsky  ORCID: orcid.org/0000-0003-3594-25434 
  • 188 Accesses

  • 3 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We explore possible extensions of the t-channel and s-channel unitary model of high energy evolution in zero transverse dimensions appropriate to very high energy/atomic number where the dipole density in a toy hadron is parametrically high. We suggest that the appropriate generalization is to allow emission of more than one dipole in a single step of energy evolution. We construct explicitly such a model that preserves the t-channel and s-channel unitarity and have the correct low density limit, and study the particle multiplicity distribution resulting from this evolution. We consider initial conditions of a single dipole and many dipoles at initial rapidity. We observe that the saturation regime in this model is preceded by a parametric range of rapidities \( \frac{1}{\alpha_s}\ln \frac{1}{\alpha_s}<Y<\frac{1}{\alpha_s}\ln \frac{1}{\alpha_s^2} \), where the saturation effects are still unimportant, but multiple emissions determine the properties of the evolution. We also discuss the influence of the saturation on the parton cascade and, in particular, find that in the saturation regime the entropy of partons becomes S ≈ \( \frac{1}{2} \) ln N where N is the mean multiplicity.

Article PDF

Download to read the full article text

Similar content being viewed by others

Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order chiral phase transition

Article 16 November 2021

The QGP Phase in Relativistic Heavy-Ion Collisions

Chapter © 2013

Nucleon parton distributions in a light-front quark model

Article Open access 09 February 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  3. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

  4. L.N. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [INSPIRE].

  5. L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

  6. A.H. Mueller and J.-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].

  7. A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].

  8. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].

  9. A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].

  10. L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].

  11. L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].

  12. L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].

  13. R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi-Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].

  16. J. Bartels and M. Wusthoff, The triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].

  17. J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].

  18. C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].

  19. J. Bartels, High-energy behavior in a non-Abelian gauge theory (II): first corrections to Tn→m beyond the leading ln s approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].

  20. J. Kwiecinski and M. Praszalowicz, Three gluon integral equation and odd c singlet Regge singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].

  21. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

  22. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

  23. A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].

  24. G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].

  25. Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].

  26. M. Braun, Structure function of the nucleus in the perturbative QCD with Nc → ∞ (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].

  27. M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit Nc → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].

  28. J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].

  29. J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].

  30. M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with Nc → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].

  31. M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].

  32. M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large Nc, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].

  33. I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].

  34. Y.V. Kovchegov, Small x F2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

  35. T. Altinoluk, A. Kovner, E. Levin and M. Lublinsky, Reggeon field theory for large Pomeron loops, JHEP 04 (2014) 075 [arXiv:1401.7431] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Kovner and M. Lublinsky, In pursuit of Pomeron loops: the JIMWLK equation and the Wess-Zumino term, Phys. Rev. D 71 (2005) 085004 [hep-ph/0501198] [INSPIRE].

  37. A. Kovner and M. Lublinsky, From target to projectile and back again: selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].

  38. Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].

  39. A. Kovner, M. Lublinsky and U. Wiedemann, From bubbles to foam: dilute to dense evolution of hadronic wave function at high energy, JHEP 06 (2007) 075 [arXiv:0705.1713] [INSPIRE].

    Article  ADS  Google Scholar 

  40. T. Altinoluk, A. Kovner, M. Lublinsky and J. Peressutti, QCD Reggeon field theory for every day: Pomeron loops included, JHEP 03 (2009) 109 [arXiv:0901.2559] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A.H. Mueller and A.I. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].

  42. E. Iancu and D.N. Triantafyllopoulos, A Langevin equation for high energy evolution with Pomeron loops, Nucl. Phys. A 756 (2005) 419 [hep-ph/0411405] [INSPIRE].

  43. E. Iancu and D.N. Triantafyllopoulos, Non-linear QCD evolution with improved triple-Pomeron vertices, Phys. Lett. B 610 (2005) 253 [hep-ph/0501193] [INSPIRE].

  44. E. Iancu, G. Soyez and D.N. Triantafyllopoulos, On the probabilistic interpretation of the evolution equations with Pomeron loops in QCD, Nucl. Phys. A 768 (2006) 194 [hep-ph/0510094] [INSPIRE].

  45. A.H. Mueller, A.I. Shoshi and S.M.H. Wong, Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B 715 (2005) 440 [hep-ph/0501088] [INSPIRE].

  46. E. Levin and M. Lublinsky, Balitsky’s hierarchy from Mueller’s dipole model and more about target correlations, Phys. Lett. B 607 (2005) 131 [hep-ph/0411121] [INSPIRE].

  47. E. Levin and M. Lublinsky, Towards a symmetric approach to high energy evolution: generating functional with Pomeron loops, Nucl. Phys. A 763 (2005) 172 [hep-ph/0501173] [INSPIRE].

  48. A. Kormilitzin, E. Levin and A. Prygarin, Multiparticle production in the mean field approximation of high density QCD, Nucl. Phys. A 813 (2008) 1 [arXiv:0807.3413] [INSPIRE].

    Article  ADS  Google Scholar 

  49. E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].

    Article  ADS  Google Scholar 

  50. E. Levin, Dipole-dipole scattering in CGC/saturation approach at high energy: summing Pomeron loops, JHEP 11 (2013) 039 [arXiv:1308.5052] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

  52. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

  53. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

  54. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

  55. E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

  56. E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

  57. H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

  58. A. Kovner and M. Lublinsky, From target to projectile and back again: selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].

  59. A. Kovner, E. Levin, M. Li and M. Lublinsky, The JIMWLK evolution and the s-channel unitarity, JHEP 09 (2020) 199 [arXiv:2006.15126] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. A. Kovner, E. Levin, M. Li and M. Lublinsky, Reggeon field theory and self duality: making ends meet, JHEP 10 (2020) 185 [arXiv:2007.12132] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. D. Amati, L. Caneschi and R. Jengo, Summing Pomeron trees, Nucl. Phys. B 101 (1975) 397 [INSPIRE].

  62. V. Alessandrini, D. Amati and R. Jengo, One-dimensional quantum theory of the Pomeron, Nucl. Phys. B 108 (1976) 425 [INSPIRE].

  63. R. Jengo, Zero slope limit of the Pomeron field theory, Nucl. Phys. B 108 (1976) 447 [INSPIRE].

  64. D. Amati, M. Le Bellac, G. Marchesini and M. Ciafaloni, Reggeon field theory for α(0) > 1, Nucl. Phys. B 112 (1976) 107 [INSPIRE].

  65. M. Ciafaloni, M. Le Bellac and G.C. Rossi, Reggeon quantum mechanics: a critical discussion, Nucl. Phys. B 130 (1977) 388 [INSPIRE].

  66. M. Ciafaloni, Instanton contributions in Reggeon quantum mechanics, Nucl. Phys. B 146 (1978) 427 [INSPIRE].

  67. P. Rembiesa and A.M. Stasto, Algebraic models for the hierarchy structure of evolution equations at small x, Nucl. Phys. B 725 (2005) 251 [hep-ph/0503223] [INSPIRE].

  68. A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].

  69. A.I. Shoshi and B.-W. Xiao, Pomeron loops in zero transverse dimensions, Phys. Rev. D 73 (2006) 094014 [hep-ph/0512206] [INSPIRE].

  70. M. Kozlov and E. Levin, Solution for the BFKL Pomeron calculus in zero transverse dimensions, Nucl. Phys. A 779 (2006) 142 [hep-ph/0604039] [INSPIRE].

  71. J.-P. Blaizot, E. Iancu and D.N. Triantafyllopoulos, A zero-dimensional model for high-energy scattering in QCD, Nucl. Phys. A 784 (2007) 227 [hep-ph/0606253] [INSPIRE].

  72. N. Armesto, S. Bondarenko, J.G. Milhano and P. Quiroga, Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD, JHEP 05 (2008) 103 [arXiv:0803.0820] [INSPIRE].

    Article  ADS  Google Scholar 

  73. E. Levin and A. Prygarin, The BFKL Pomeron calculus in zero transverse dimension: summation of the Pomeron loops and the generating functional for the multiparticle production processes, Eur. Phys. J. C 53 (2008) 385 [hep-ph/0701178] [INSPIRE].

  74. A. Kovner, E. Levin and M. Lublinsky, QCD unitarity constraints on Reggeon field theory, JHEP 08 (2016) 031 [arXiv:1605.03251] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].

  76. A.M. Polyakov, A similarity hypothesis in the strong interactions. 1. Multiple hadron production in e+e− annihilation, Sov. Phys. JETP 32 (1971) 296 [Zh. Eksp. Teor. Fiz. 59 (1970) 542] [INSPIRE].

  77. Z. Koba, H.B. Nielsen and P. Olesen, Scaling of multiplicity distributions in high-energy hadron collisions, Nucl. Phys. B 40 (1972) 317 [INSPIRE].

  78. Z. Koba, Multi-body phenomena in strong interactions — description of hadronic multi-body final states, CERN Yellow Report CERN-73-12, CERN, Geneva, Switzerland (1973), p. 171.

  79. I. Gradstein and I. Ryzhik, Table of integrals, series and products, fifth edition, Academic Press, London, U.K. (1994).

  80. D.E. Kharzeev and E.M. Levin, Deep inelastic scattering as a probe of entanglement, Phys. Rev. D 95 (2017) 114008 [arXiv:1702.03489] [INSPIRE].

  81. F. Gelis, T. Lappi and L. McLerran, Glittering glasmas, Nucl. Phys. A 828 (2009) 149 [arXiv:0905.3234] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT, 06269, USA

    Alex Kovner

  2. Department of Particle Physics, Tel Aviv University, 69978, Tel Aviv, Israel

    Alex Kovner & Eugene Levin

  3. Departemento de Física, Universidad Técnica Federico Santa María and Centro Científico-Tecnológico de Valparaíso, Avda. Espana 1680, Casilla 110-V, Valparaíso, Chile

    Eugene Levin

  4. Physics Department, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel

    Michael Lublinsky

Authors
  1. Alex Kovner
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eugene Levin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Michael Lublinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michael Lublinsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2201.01551

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovner, A., Levin, E. & Lublinsky, M. Nuclei in the toy world: beyond the Pomeron in zero transverse dimensions. J. High Energ. Phys. 2022, 19 (2022). https://doi.org/10.1007/JHEP05(2022)019

Download citation

  • Received: 13 January 2022

  • Revised: 08 April 2022

  • Accepted: 12 April 2022

  • Published: 03 May 2022

  • DOI: https://doi.org/10.1007/JHEP05(2022)019

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering or Small-X Physics
  • Effective Field Theories of QCD
  • Quark-Gluon Plasma
  • Resummation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

192.68.51.226

Polish Consortium ICM University of Warsaw (3000169041) - National Centre for Nuclear Research (3000197366) - Polish Consortium ICM University of Warsaw (3003616166)

Springer Nature

© 2024 Springer Nature