Abstract
We explore possible extensions of the t-channel and s-channel unitary model of high energy evolution in zero transverse dimensions appropriate to very high energy/atomic number where the dipole density in a toy hadron is parametrically high. We suggest that the appropriate generalization is to allow emission of more than one dipole in a single step of energy evolution. We construct explicitly such a model that preserves the t-channel and s-channel unitarity and have the correct low density limit, and study the particle multiplicity distribution resulting from this evolution. We consider initial conditions of a single dipole and many dipoles at initial rapidity. We observe that the saturation regime in this model is preceded by a parametric range of rapidities \( \frac{1}{\alpha_s}\ln \frac{1}{\alpha_s}<Y<\frac{1}{\alpha_s}\ln \frac{1}{\alpha_s^2} \), where the saturation effects are still unimportant, but multiple emissions determine the properties of the evolution. We also discuss the influence of the saturation on the parton cascade and, in particular, find that in the saturation regime the entropy of partons becomes S ≈ \( \frac{1}{2} \) ln N where N is the mean multiplicity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
L.N. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [INSPIRE].
L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].
A.H. Mueller and J.-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].
A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].
A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].
L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].
L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].
L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi-Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].
R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].
J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].
J. Bartels and M. Wusthoff, The triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].
J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].
C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].
J. Bartels, High-energy behavior in a non-Abelian gauge theory (II): first corrections to Tn→m beyond the leading ln s approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].
J. Kwiecinski and M. Praszalowicz, Three gluon integral equation and odd c singlet Regge singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].
L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].
G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].
Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].
M. Braun, Structure function of the nucleus in the perturbative QCD with Nc → ∞ (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].
M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit Nc → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].
J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].
J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].
M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with Nc → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].
M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].
M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large Nc, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].
I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
Y.V. Kovchegov, Small x F2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
T. Altinoluk, A. Kovner, E. Levin and M. Lublinsky, Reggeon field theory for large Pomeron loops, JHEP 04 (2014) 075 [arXiv:1401.7431] [INSPIRE].
A. Kovner and M. Lublinsky, In pursuit of Pomeron loops: the JIMWLK equation and the Wess-Zumino term, Phys. Rev. D 71 (2005) 085004 [hep-ph/0501198] [INSPIRE].
A. Kovner and M. Lublinsky, From target to projectile and back again: selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].
Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].
A. Kovner, M. Lublinsky and U. Wiedemann, From bubbles to foam: dilute to dense evolution of hadronic wave function at high energy, JHEP 06 (2007) 075 [arXiv:0705.1713] [INSPIRE].
T. Altinoluk, A. Kovner, M. Lublinsky and J. Peressutti, QCD Reggeon field theory for every day: Pomeron loops included, JHEP 03 (2009) 109 [arXiv:0901.2559] [INSPIRE].
A.H. Mueller and A.I. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].
E. Iancu and D.N. Triantafyllopoulos, A Langevin equation for high energy evolution with Pomeron loops, Nucl. Phys. A 756 (2005) 419 [hep-ph/0411405] [INSPIRE].
E. Iancu and D.N. Triantafyllopoulos, Non-linear QCD evolution with improved triple-Pomeron vertices, Phys. Lett. B 610 (2005) 253 [hep-ph/0501193] [INSPIRE].
E. Iancu, G. Soyez and D.N. Triantafyllopoulos, On the probabilistic interpretation of the evolution equations with Pomeron loops in QCD, Nucl. Phys. A 768 (2006) 194 [hep-ph/0510094] [INSPIRE].
A.H. Mueller, A.I. Shoshi and S.M.H. Wong, Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B 715 (2005) 440 [hep-ph/0501088] [INSPIRE].
E. Levin and M. Lublinsky, Balitsky’s hierarchy from Mueller’s dipole model and more about target correlations, Phys. Lett. B 607 (2005) 131 [hep-ph/0411121] [INSPIRE].
E. Levin and M. Lublinsky, Towards a symmetric approach to high energy evolution: generating functional with Pomeron loops, Nucl. Phys. A 763 (2005) 172 [hep-ph/0501173] [INSPIRE].
A. Kormilitzin, E. Levin and A. Prygarin, Multiparticle production in the mean field approximation of high density QCD, Nucl. Phys. A 813 (2008) 1 [arXiv:0807.3413] [INSPIRE].
E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].
E. Levin, Dipole-dipole scattering in CGC/saturation approach at high energy: summing Pomeron loops, JHEP 11 (2013) 039 [arXiv:1308.5052] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].
H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].
A. Kovner and M. Lublinsky, From target to projectile and back again: selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].
A. Kovner, E. Levin, M. Li and M. Lublinsky, The JIMWLK evolution and the s-channel unitarity, JHEP 09 (2020) 199 [arXiv:2006.15126] [INSPIRE].
A. Kovner, E. Levin, M. Li and M. Lublinsky, Reggeon field theory and self duality: making ends meet, JHEP 10 (2020) 185 [arXiv:2007.12132] [INSPIRE].
D. Amati, L. Caneschi and R. Jengo, Summing Pomeron trees, Nucl. Phys. B 101 (1975) 397 [INSPIRE].
V. Alessandrini, D. Amati and R. Jengo, One-dimensional quantum theory of the Pomeron, Nucl. Phys. B 108 (1976) 425 [INSPIRE].
R. Jengo, Zero slope limit of the Pomeron field theory, Nucl. Phys. B 108 (1976) 447 [INSPIRE].
D. Amati, M. Le Bellac, G. Marchesini and M. Ciafaloni, Reggeon field theory for α(0) > 1, Nucl. Phys. B 112 (1976) 107 [INSPIRE].
M. Ciafaloni, M. Le Bellac and G.C. Rossi, Reggeon quantum mechanics: a critical discussion, Nucl. Phys. B 130 (1977) 388 [INSPIRE].
M. Ciafaloni, Instanton contributions in Reggeon quantum mechanics, Nucl. Phys. B 146 (1978) 427 [INSPIRE].
P. Rembiesa and A.M. Stasto, Algebraic models for the hierarchy structure of evolution equations at small x, Nucl. Phys. B 725 (2005) 251 [hep-ph/0503223] [INSPIRE].
A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].
A.I. Shoshi and B.-W. Xiao, Pomeron loops in zero transverse dimensions, Phys. Rev. D 73 (2006) 094014 [hep-ph/0512206] [INSPIRE].
M. Kozlov and E. Levin, Solution for the BFKL Pomeron calculus in zero transverse dimensions, Nucl. Phys. A 779 (2006) 142 [hep-ph/0604039] [INSPIRE].
J.-P. Blaizot, E. Iancu and D.N. Triantafyllopoulos, A zero-dimensional model for high-energy scattering in QCD, Nucl. Phys. A 784 (2007) 227 [hep-ph/0606253] [INSPIRE].
N. Armesto, S. Bondarenko, J.G. Milhano and P. Quiroga, Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD, JHEP 05 (2008) 103 [arXiv:0803.0820] [INSPIRE].
E. Levin and A. Prygarin, The BFKL Pomeron calculus in zero transverse dimension: summation of the Pomeron loops and the generating functional for the multiparticle production processes, Eur. Phys. J. C 53 (2008) 385 [hep-ph/0701178] [INSPIRE].
A. Kovner, E. Levin and M. Lublinsky, QCD unitarity constraints on Reggeon field theory, JHEP 08 (2016) 031 [arXiv:1605.03251] [INSPIRE].
A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].
A.M. Polyakov, A similarity hypothesis in the strong interactions. 1. Multiple hadron production in e+e− annihilation, Sov. Phys. JETP 32 (1971) 296 [Zh. Eksp. Teor. Fiz. 59 (1970) 542] [INSPIRE].
Z. Koba, H.B. Nielsen and P. Olesen, Scaling of multiplicity distributions in high-energy hadron collisions, Nucl. Phys. B 40 (1972) 317 [INSPIRE].
Z. Koba, Multi-body phenomena in strong interactions — description of hadronic multi-body final states, CERN Yellow Report CERN-73-12, CERN, Geneva, Switzerland (1973), p. 171.
I. Gradstein and I. Ryzhik, Table of integrals, series and products, fifth edition, Academic Press, London, U.K. (1994).
D.E. Kharzeev and E.M. Levin, Deep inelastic scattering as a probe of entanglement, Phys. Rev. D 95 (2017) 114008 [arXiv:1702.03489] [INSPIRE].
F. Gelis, T. Lappi and L. McLerran, Glittering glasmas, Nucl. Phys. A 828 (2009) 149 [arXiv:0905.3234] [INSPIRE].
A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2201.01551
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Kovner, A., Levin, E. & Lublinsky, M. Nuclei in the toy world: beyond the Pomeron in zero transverse dimensions. J. High Energ. Phys. 2022, 19 (2022). https://doi.org/10.1007/JHEP05(2022)019
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2022)019